
CS 61C C
Summer 2024 Discussion 2

1 Pre-Check: Memory in C
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 If you try to dereference a variable that is not a pointer, what will happen? What

about when you free one?

It will treat that variable’s underlying bits as if they were a pointer and attempt to

access the data there. C will allow you to do almost anything you want, though if

you attempt to access an ”illegal” memory address, it will segfault for reasons we

will learn later in the course. It’s why C is not considered ”memory safe”: you can

shoot yourself in the foot if you’re not careful. If you free a variable that either has

been freed before or was not malloced/calloced/realloced, bad things happen. The

behavior is undefined and terminates execution, resulting in an ”invalid free” error.

1.2 Memory sectors are defined by the hardware, and cannot be altered.

False. The four major memory sectors, stack, heap, static/data, and text/code for

any given process (application) are defined by the operating system and may differ

depending on what kind of memory is needed for it to run.

What’s an example of a process that might need significant stack space, but very

little text, static, and heap space? (Almost any basic deep recursive scheme, since

you’re making many new function calls on top of each other without closing the

previous ones, and thus, stack frames.)

What’s an example of a text and static heavy process? (Perhaps a process that

is incredibly complicated but has efficient stack usage and does not dynamically

allocate memory.)

What’s an example of a heap-heavy process? (Maybe if you’re using a lot of dynamic

memory that the user attempts to access.)

1.3 For large recursive functions, you should store your data on the heap over the stack.

False. Generally speaking, if you need to keep access to data over several separate

function calls, use the heap. However, recursive functions call themselves, creating

multiple stack frames and using each of their return values. If you store data on the

heap in a recursive scheme, your malloc calls may lead to you rapidly running out

of memory, or can lead to memory leaks as you lose where you allocate memory as

each stack frame collapses.

2 C

2 Memory Management
C does not automatically handle memory for you. In each program, an address

space is set aside, separated in 2 dynamically changing regions and 2 ’static’ regions.

• The Stack: local variables inside of functions, where data is garbage immedi-

ately after the function in which it was defined returns. Each function call

creates a stack frame with its own arguments and local variables. The stack

dynamically changes, growing downwards as multiple functions are called

within each other (LIFO structure), and collapsing upwards as functions finish

execution and return.

• The Heap: memory manually allocated by the programmer with malloc,

calloc, or realloc. Used for data we want to persist beyond function calls,

growing upwards to ’meet’ the stack. Careful heap management is necessary

to avoid Heisenbugs! Memory is freed only when the programmer explicitly

frees it!

• Static data: global variables declared outside of functions, does not grow or

shrink through function execution.

• Code (or Text): loaded at the start of the program and does not change after,

contains executable instructions and any pre-processor macros.

There are a number of functions in C that can be used to dynamically allocate

memory on the heap. The following are the ones we use in this class:

• malloc(size_t size) allocates a block of size bytes and returns the start of

the block. The time it takes to search for a block is generally not dependent

on size.

• calloc(size_t count, size_t size) allocates a block of count * size bytes,

sets every value in the block to zero, then returns the start of the block.

• realloc(void *ptr, size_t size) ”resizes” a previously-allocated block of

memory to size bytes, returning the start of the resized block.

• free(void *ptr) deallocates a block of memory which starts at ptr that was

previously allocated by the three previous functions.

2.1 Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array arr of k integers

arr = malloc(sizeof(int) * k);

(b) A string str containing p characters

str = malloc(sizeof(char) * (p + 1)); Don’t forget the null terminator!

(c) An n×m matrix mat of integers initialized to zero.

C 3

mat = calloc(n * m, sizeof(int)); Alternative solution. This might be

needed if you wanted to efficiently permute the rows of the matrix.

1 mat = calloc(n, sizeof(int *));

2 for (int i = 0; i < n; i++)

3 mat[i] = calloc(m, sizeof(int));

(d) Unallocating all but the first 5 values in an integer array arr. (Assume arr has

more than 5 values)

arr = realloc(arr, 5 * sizeof(int));

2.2 Compare the following two implementations of a function which duplicates a string.

Is either one correct? Which one runs faster?

1 char* strdup1(char* s) {

2 int n = strlen(s);

3 char* new_str = malloc((n + 1) * sizeof(char));

4 for (int i = 0; i < n; i++) new_str[i] = s[i];

5 return new_str;

6 }

7 char* strdup2(char* s) {

8 int n = strlen(s);

9 char* new_str = calloc(n + 1, sizeof(char));

10 for (int i = 0; i < n; i++) new_str[i] = s[i];

11 return new_str;

12 }

The first implementation is incorrect because malloc doesn’t initialize the allocated

memory to any given value, so the new string may not be null-terminated. This

is easily fixed, however, just by setting the last character in new str to the null

terminator. The second implementation is correct since calloc will set each character

to zero, so the string is always null-terminated.

Between the two implementations, the first will run slightly faster since malloc

doesn’t need to set the memory values. calloc does set each memory location, so it

runs in O(n) time in the worst case. Effectively, we do ”extra” work in the second

implementation setting every character to zero, and then overwrite them with the

copied values afterwards.

3 Review: Introduction to C
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

3.1 The correct way of declaring a character array is char[] array.

4 C

False. The correct way is char array[].

3.2 True or False: C is a pass-by-value language.

True. If you want to pass a reference to anything, you should use a pointer.

4 Pass-by-who?
4.1 The following functions may contain logic or syntax errors. Find and correct them.

(a) Returns the sum of all the elements in summands.

It is necessary to pass a size alongside the pointer.

1 int sum(int* summands, size_t n) {

2 int sum = 0;

3 for (int i = 0; i < n; i++)

4 sum += *(summands + i);

5 return sum;

6 }

(b) Increments all of the letters in the string which is stored at the front of an

array of arbitrary length, n >= strlen(string). Does not modify any other

parts of the array’s memory.

The ends of strings are denoted by the null terminator rather than n. Simply

having space for n characters in the array does not mean the string stored

inside is also of length n.

1 void increment(char* string) {

2 for (i = 0; string[i] != 0; i++)

3 string[i]++; // or (*(string + i))++;

4 }

Another common bug to watch out for is the corner case that occurs when

incrementing the character with the value 0xFF. Adding 1 to 0xFF will overflow

back to 0, producing a null terminator and unintentionally shortening the string.

(c) Overwrites an input string src with “61C is awesome!” if there’s room. Does

nothing if there is not. Assume that length correctly represents the length of

src.

1 void cs61c(char *src, size_t length) {

2 char *srcptr, replaceptr;

3 char replacement[16] = "61C is awesome!";

4 srcptr = src;

5 replaceptr = replacement;

6 if (length >= 16) {

7 for (int i = 0; i < 16; i++)

8 *srcptr++ = *replaceptr++;

9 }

10 }

C 5

char *srcptr, replaceptr initializes a char pointer, and a char—not two

char pointers.

The correct initialization should be, char *srcptr, *replaceptr.

4.2 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

Hint: Our answer is around three lines long.

1 void swap(int *x, int *y) {

2 int temp = *x;

3 *x = *y;

4 *y = temp;

5 }

(b) Return the number of bytes in a string. Do not use strlen.

Hint: Our answer is around 5 lines long.

1 int mystrlen(char* str) {

2 int count = 0;

3 while (*str != 0) {

4 str++;

5 count++;

6 }

7 return count;

8 }

5 C Generics
5.1 True or False: In C, it is possible to directly dereference a void * pointer, e.g.

... = *ptr;

False. To dereference a pointer, we must know the number of bytes to access from

memory at compile time. Generics employ generic pointers and therefore cannot use

the dereference operator!

6 C

5.2 Generic functions (i.e., generics) in C use void * pointers to operate on memory

without the restriction of types. Such generics pointers do not support dereferencing,

as the number of bytes to access from memory is not known at compile-time. They

instead use byte handling functions such as memcpy and memmove.

Implement rotate, which will prompt the following program to generate the provided

output.

1 int main(int argc, char *argv[]) {

2 int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

3 print_int_array(array, 10);

4 rotate(array, array + 5, array + 10);

5 print_int_array(array, 10);

6 rotate(array, array + 1, array + 10);

7 print_int_array(array, 10);

8 rotate(array + 4, array + 5, array + 6);

9 print_int_array(array, 10);

10 return 0;

11 }

Output:

1 $./rotate

2 Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5

4 Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6

5 Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6

Your Solution:

1 void rotate(void *front, void *separator, void *end) {

2

3

4

5

6

7

8

9 }

1 void rotate(, ,) {

2 size_t width = (char *) end - (char *) front;

3 size_t prefix_width = (char *) separator - (char *) front;

4 size_t suffix_width = width - prefix_width;

5 char temp[prefix_width];

6 memcpy(temp, front, prefix_width);

7 memmove(front, separator, suffix_width);

8 memcpy((char *) end - prefix_width, temp, prefix_width);

C 7

9 }

	Pre-Check: Memory in C
	Memory Management
	Review: Introduction to C
	Pass-by-who?
	C Generics

