
CS 61C RISC-V
Summer 2024 Discussion 4

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.

False. This only holds for data types that are four bytes wide, like int or float.

For data-types like char that are only one byte wide, 4(a0) is too large of an offset

to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).

1.2 Assuming no compiler or operating system protections, it is possible to have the code

jump to data stored at 0(a0) (offset 0 from the value in register a0) and execute

instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is possible

for your code to jump to and execute instructions passed into the program via an

array. Conversely, it’s also possible for your code to treat itself as normal data

(search up self-modifying code if you want to see more details).

1.3 jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.

False. jalr is used to return to the memory address specified in the second argument.

Keep in mind that jal jumps to a label (which is translated into an immediate by

the assembler), whereas jalr jumps to an address stored in a register, which is set

at runtime. Related, j label is a pseudo-instruction for jal x0, label (they do

the same thing).

1.4 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

False. a0 and a1 registers are often used to store the return value from a function,

so the function can set their values to the its return values before returning.

1.5 In order to use the saved registers (s0-s11) in a function, we must store their values

before using them and restore their values before returning.

True. The saved registers are callee-saved, so we must save and restore them at the

beginning and end of functions. This is frequently done in organized blocks of code

called the ”function prologue” and ”function epilogue”.

1.6 The stack should only be manipulated at the beginning and end of functions, where

the callee saved registers are temporarily saved.



2 RISC-V

False. While it is a good idea to create a separate ’prologue’ and ’epilogue’ to save

callee registers onto the stack, the stack is mutable anywhere in the function. A

good example is if you want to preserve the current value of a temporary register,

you can decrement the sp to save the register onto the stack right before a function

call.



RISC-V 3

2 Memory Access
Using the given instructions and the sample memory array, what will happen when

the RISC-V code is executed? For load instructions (lw, lb, lh), write out what

each register will store. For store instructions (sw, sh, sb), update the memory

array accordingly. Recall that RISC-V is little-endian and byte addressable.

2.1 li t0 0x00FF0000

lw t1 0(t0)

addi t0 t0 4

lh t2 2(t0)

lw s0 0(t1)

lb s1 3(t2)

What value does each register hold after

the code is executed?

...

0x000C561C

36
...

0xFDFDFDFD

0xDEADB33F
...

0xC5161C00
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00000036

0x00000024

0x0000000C

0x00000000

t0 will hold 0x00FF0004, adding 4 to the initial address. t1 will hold 36, loading the

word from the address 0x00FF0000. t2 will hold 0xC, loading the upper half of the

address 0x00FF0004. s0 will hold the word at 36 = 0x24, so 0xDEADB33F. Finally,

s1 will hold 0xFFFFFFC5, taking the most significant byte and sign-extending it.

2.2 li t0 0xABADCAFE

li t1 0xF9120504

li t2 0xBEEFCACE

sw t0 0(t1)

addi t1 t1 4

addi t0 t0 4

sh t1 2(t0)

sb t2 1(t2)

sb t2 3(t1)

sb t2 3(t0)

0x00000000

0xFFFFFFFF

0xF9120504

0xABADCAFE

0x00000004
0x00000000

Update the memory array with its new values after the code is executed. Some

memory addresses may not have been labeled for you yet.

0xCE000000

0xABADCAFE

0x0000CE00

0xCE080000

0x00000000

0xFFFFFFFF

0xF9120508

0xF9120504
0xBEEFCAD2
0xBEEFCACE

0xABADCB02
0xABADCAFE

0x00000004
0x00000000



4 RISC-V

3 Lost in Translation
3.1 Translate between the C and RISC-V verbatim.

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

addi s0, x0, 4

addi s1, x0, 5

addi s2, x0, 6

add s3, s0, s1

add s3, s3, s2

addi s3, s3, 10

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

sw x0, 0(s0)

addi s1, x0, 2

sw s1, 4(s0)

slli t0, s1, 2

add t0, t0, s0

sw s1, 0(t0)

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 5

addi s1, x0, 10

add t0, s0, s0

bne t0, s1, else

xor s0, x0, x0

jal x0, exit

else:

addi s1, s0, -1

exit:

// computes s1 = 2ˆ30

// assume int s1, s0; was declared above

s1 = 1;

for(s0 = 0; s0 != 30; s0++) {

s1 *= 2;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:



RISC-V 5

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}

addi s1, x0, 0

loop:

beq s0, x0, exit

add s1, s1, s0

addi s0, s0, -1

jal x0, loop

exit:

4 Calling Convention Practice
Let’s review what special meaning we assign to each type of register in RISC-V.

Register Convention Saver

x0 Stores zero N/A

sp Stores the stack pointer Callee

ra Stores the return address Caller

a0 - a7 Stores arguments and return

values

Caller

t0 - t7 Stores temporary values that do

not persist after function calls

Caller

s0 - s11 Stores saved values that persist

after function calls

Callee

To save and recall values in registers, we use the sw and lw instructions to save and

load words to and from memory, and we typically organize our functions as follows:

1 # Prologue

2 addi sp sp -8 # Room for two registers. (Why?)

3 sw s0 0(sp) # Save s0 (or any saved register)

4 sw s1 4(sp) # Save s1 (or any saved register)

5

6 # Code omitted

7

8 # Epilogue

9

10 lw s0 0(sp) #Load s0 (or any saved register)

11 lw s1 4(sp) #Load s1 (or any saved register)

12 addi sp sp 8 #Restore the stack pointer

Now, let’s see what happens if we ignore calling convention.

4.1 Consider the following blocks of code:

1 main:

2 # Prologue

3 # Saves ra

4

5 # Code omitted

6 addi s0 x0 5

7 # Breakpoint 1

8 jal ra foo



6 RISC-V

9 # Breakpoint 3

10 mul a0 a0 s0

11 # Code omitted

12

13 # Epilogue

14 # Restores ra

15 j exit

1 foo:

2 # Preamble

3 # Saves s0

4

5 # Code omitted

6 addi s0 x0 4

7 # Breakpoint 2

8

9 # Epilogue

10 # Restores s0

11 jr ra

(a) Does main always behave as expected, as long as foo follows calling convention?

Yes, since foo saves the saved registers, and main saves the return address

(b) What does s0 store at breakpoint 1? Breakpoint 2? Breakpoint 3?

5, then 4, then 5

(c) Now suppose that foo didn’t have a prologue or epilogue. What would s0 store

at each of the breakpoints? Would this cause errors in our code?

5, then 4, then still 4. This would cause errors, since we use the value of s0 in

our calculations.

In part (c) above, we saw one way how not following calling convention could make

our code misbehave. Other things to watch out for are: assuming that a or t registers

will be the same after calling a function, and forgetting to save ra before calling a

function.

4.2 In a function called myfunc, we want to call two functions called generate random

and reverse.

myfunc takes in 3 arguments: a0, a1, a2

generate random takes in no arguments and returns a random integer to a0.

reverse takes in 4 arguments: a0, a1, a2, a3 and doesn’t return anything.

1 myfunc:

2 # Prologue (omitted)

3

4 # assign registers to hold arguments to myfunc

5 addi t0 a0 0

6 addi s0 a1 0

7 addi a7 a2 0

8

9 # Save the registers in 4.2

10 jal generate_random

11 # Load the registers stored from 4.2



RISC-V 7

12

13 # store and process return value

14 addi t1 a0 0

15 slli t5 t1 2

16

17 # setup arguments for reverse

18 add a0 t0 x0

19 add a1 s0 x0

20 add a2 t5 x0

21 addi a3 t1 0

22

23 # Save the registers in 4.3

24 jal reverse

25 # Load the registers stored from 4.2

26

27 # additional computations

28 add t0 s0 x0

29 add t1 t1 a7

30 add s9 s8 s7

31 add s3 x0 t5

32

33 # Epilogue (omitted)

34 ret

4.1 Which registers, if any, need to be saved on the stack in the prologue?

s0, s3, s9, ra, s7, and s8 We must save all s-registers we modify (note that since s7

and s8 were used, it is assumed that they were modified in omitted code), and it is

conventional to store ra in the prologue (rather than just before calling a function)

when the function contains a function call.

4.2 Which registers do we need to save on the stack before calling generate random?

t0, a7

Under calling conventions, all the t-registers and a-registers may be changed by

generate random, so we must store all of these which we need to know the value of

after the call. t0 is used on line 16 and a7 is used on line 25. Note that while t1 and

t5 are used later, we don’t care about its value before calling generate random (they

are set after the call, on lines 12-13), so we don’t need to store them.

4.3 Which registers do we need to save on the stack before calling reverse?

t1, t5, a7

As before, we must save t-registers and a-registers we need to read later.

4.4 Which registers need to be recovered in the epilogue before returning?

s0, s3, s9, ra, s7, and s8

This mirrors what we saved in the prologue.


	Pre-Check
	Memory Access
	Lost in Translation
	Calling Convention Practice

