
CS 61C Combinational Logic, FSM,
SDS

Summer 2024 Discussion 6

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Simplifying boolean logic expressions will not affect the performance of the hardware

implementation.

False. Different gate arrangements that implement the same logic can have different

propagation delays, which can affect the allowable clock speed.

1.2 The fewer logic gates, the faster the circuit (assuming each gate has the same

propagation delays).

False. Propagation delays add to the allowable clock speed with the depth of the

circuit, so a wide circuit with more gates in parallel can have less delay than just a

few gates arranged in sequence.

1.3 The time it takes for clock-to-q and register setup can be greater than one clock

cycle.

False. This can result in instability if registers are connected to each other, as

register outputs may not have propagated properly before the next rising edge.

1.4 Every possible combinational logic circuit can be expressed by some combination of

NOR gates.

True. NOR can be used to express AND, OR, and NOT gates. Thus, NOR is

’functionally complete’ and can be used to represent any possible Boolean expression,

and thus any CL circuit.

1.5 The shortest combinational logic path between two state elements is useful in

determining circuit frequency and minimum clock cycle.

False. The minimum clock cycle has to allow enough time for every CL delay to

settle on an output, so the frequency is based off of the longest CL delay possible

in any area between state elements.



2 Combinational Logic, FSM, SDS

2 Logic Gates
2.1 Label the following logic gates:

NOT, AND, OR, XOR, NAND, NOR, XNOR

2.2 Write simplified boolean expressions for the boolean function given input signals A

and B. Remember that simplified boolean expressions should only have NOT, AND,

and OR primitives (A, ×, and + respectively):

(a) NAND(A, B)

Conceptually, NAND is the complement of AND, or (AB). We can use De

Morgan’s law to expand this to A+B.

Alternatively, using the canonical Sums of Products form results in AB +AB +

AB, which simplifies to A+AB. Adding the AB term back again (Consider:

Why can we do this?), allows us to simplify to A+B.

(b) XOR(A, B)

AB +AB (canonical form)

(c) XNOR(A, B)

AB +AB (canonical form)

2.3 Create an AND gate using only NAND gates.

A

B
Output

2.4 How many different two-input logic gates can there be? How many n-input gates?

A truth table with n inputs has 2n rows. Each logic gate has a 0 or a 1 at each of

these rows. Imagining a function as a 2n-bit number, we count 22
n

total functions,

or 16 in the case of n = 2.



Combinational Logic, FSM, SDS 3

3 Boolean Logic
In digital electronics, it is often important to get certain outputs based on your

inputs, as laid out by a truth table. Truth tables map directly to Boolean expressions,

and Boolean expressions map directly to logic gates. However, in order to minimize

the number of logic gates needed to implement a circuit, it is often useful to simplify

long Boolean expressions.

We can simplify expressions using the nine key laws of Boolean algebra:

Name AND Form OR form

Commutative AB = BA A + B = B + A

Associative AB(C) = A(BC) A + (B + C) = (A + B) + C

Identity 1A = A 0 + A = A

Null 0A = 0 1 + A = 1

Absorption A(A + B) = A A + AB = A

Distributive (A + B)(A + C) = A + BC A(B + C) = AB + AC

Idempotent A(A) = A A + A = A

Inverse A(A) = 0 A + A = 1

De Morgan’s AB = A + B A + B = A(B)

3.1 Simplify the following Boolean expressions:

(a) (A+B)(A+B)C

(A+B)(A+B)C = (A+BB)C

= AC

(b) ABC +ABC +ABC +ABC +ABC +ABC

AC(B +B) +AC(B +B) +AC(B +B) = AC +AC +AC

= AC +AC +AC +AC

= (A+A)C +A(C + C)

= C +A

(c) A(BC +BC)

A(BC +BC) = A+BC +BC

= A+ (BC)BC

= A+ (B + C)(B + C)

= A+BC +BC

(d) A(A+B) + (B +AA)(A+B)



4 Combinational Logic, FSM, SDS

A(A+B) + (B +AA)(A+B) = (AA+AB) + (B +AA)(A+B)

= AB + (B +A)(A+B)

= AB + (BA+AA+BB +AB)

= AB + (BA+A+AB)

= AB +A

= A+B

Alternatively,

A(A+B) + (B +AA)(A+B) = A(A+B) + (A+B)(A+B)

= (A+B)(A+A+B)

= A+B

4 Combinational Logic Design
Logic gates can be connected together to create a variety of useful functions. In

this question, we will implement a simplified version of the memory write mask for

the RISC-V CPU. The memory write mask looks at the store instruction given and

decides which of the four bytes (in one word of memory) to write to. It is four bits

long - each bit is one if we should write to the corresponding byte, but zero if we

shouldn’t. For simplicity, assume that all memory addresses used in store instruction

are word-aligned. Here’s a truth table for the simpified memory mask:

Instruction funct3 Out

sb 000 0001

sh 001 0011

sw 010 1111

(undefined) 011-111 xxxx

The x’s for the final entry of the table indicate that any output is valid for that

case.

4.1 Write out and simplify boolean expressions for each of the output bits in terms of

the funct3 (input) bits f2, f1, f0.

We’ll work on the bits from right to left. For Out[0], its value is one in all input

cases that are defined, so we can just set Out[0] = 1.

For the other bits, we can write out the base canonical form first, but then we can

bring in any amount of terms from the undefined cases (equivalent to setting this

bit to one in that undefined case) to simplify the expression.

Out[1] = f2f1f0 + f2f1f0 from the cases given. Since all of the cases where f2=1

are undefined, we can bring in some of those terms to cancel out the f2’s: Out[1] =

f2f1f0 + f2f1f0 + f2f1f0 + f2f1f0 = f1f0 + f1f0. We can go one step further: the

input 011 is also undefined, so if we bring in that term (and the corresponding f2=1

term 111), we end up with Out[1] = f1f0 + f1f0 + f1f0 = f1 + f0.



Combinational Logic, FSM, SDS 5

Following a similar process, the final two bits simplify to Out[3] = Out[2] = f1.

4.2 Draw out the boolean circuit for this memory write mask based on your simplified

expressions above. You may use constants 0 and 1, and the logic gates AND, OR,

NOT.

f2

f1

f0

Out[3]

Out[2]

Out[1]

Out[0]

1

5 FSM
A finite state machine is a type of simple automaton where the next state and output

depend only on the current state and input. Each state is represented by a circle,

and every proper finite state machine has a starting state, signified either with the

label “Start” or a single arrow leading into it. Each transition between states is

labeled [input]/[output].

5.1 What pattern in a bitstring does the FSM below detect? What would it output for

the input bitstring “011001001110”?

00/0 1 1/1

0/0

1/0

Start

The FSM outputs a 1 if it detects the pattern “11”.

The FSM would output “001000000110”

5.2 Fill in the following FSM for outputting a 1 whenever we have two repeating bits as

the most recent bits, and a 0 otherwise. You may not need all states.



6 Combinational Logic, FSM, SDS

Start

1/0

0/0

1

1/1

0/0

0

0/1

1/0

5.3 Draw an FSM that will output a 1 if it recognizes the regex pattern {10+1}. (That
is, if the input forms a pattern of a 1, followed by one or more 0s, followed by a 1.)

Start

0/0

1/0

0

0/0

1/0

1

1/0

10+

0/0

1/1

0/0



Combinational Logic, FSM, SDS 7

6 State Intro
There are two basic types of circuits: combinational logic circuits and state elements.

Combinational logic circuits simply change based on their inputs after whatever

propagation delay is associated with them. For example, if an AND gate (pictured

below) has an associated propagation delay of 2ps, its output will change based on

its input as follows:

input a

input b

output

You should notice that the output of this AND gate always changes 2ps after its

inputs change.

State elements, on the other hand, can remember their inputs even after the inputs

change. State elements change value based on a clock signal. A rising edge-triggered

register, for example, samples its input at the rising edge of the clock (when the

clock signal goes from 0 to 1).

Like logic gates, registers also have a delay associated with them before their output

will reflect the input that was sampled. This is called the clk-to-q delay. (“Q” often

indicates output). This is the time between the rising edge of the clock signal and

the time the register’s output reflects the input change.

The input to the register samples has to be stable for a

certain amount of time around the rising edge of the clock

for the input to be sampled accurately. The amount of time

before the rising edge the input must be stable is called the

setup time, and the time after the rising edge the input must

be stable is called the hold time. Hold time is generally

included in clk-to-q delay, so clk-to-q time will usually be greater than or equal to

hold time. Logically, the fact that clk-to-q ≥ hold time makes sense since it only

takes clk-to-q seconds to copy the value over, so there’s no need to have the value

fed into the register for any longer.

For the following register circuit, assume setup of 2.5ps, hold time of 1.5ps, and a

clk-to-q time of 1.5ps. The clock signal has a period of 13ps.

clock

input

output

You’ll notice that the value of the output in the diagram above doesn’t change

immediately after the rising edge of the clock. Until enough time has passed for

the output to reflect the input, the value held by the output is garbage; this is

represented by the shaded gray part of the output graph. Clock cycle time must be

small enough that inputs to registers don’t change within the hold time and large

enough to account for clk-to-q times, setup times, and combinational logic delays.



8 Combinational Logic, FSM, SDS

6.1 For the following 2 circuits, fill out the timing diagram. The clock period (rising

edge to rising edge) is 8ps. For every register, clk-to-q delay is 2ps, setup time is

4ps, and hold time is 2ps. NOT gates have a 2ps propagation delay, which is already

accounted for in the !clk signal given.

clk

!clk

A

R1

R2

clk

in

s0

s1

out

6.2 In the circuit below, RegA and RegB have setup, hold, and clk-to-q times of 4ns,

all logic gates have a delay of 5ns, and RegC has a setup time of 6ns. What is the

maximum allowable hold time for RegC? What is the minimum acceptable clock

cycle time for this circuit, and clock frequency does it correspond to?



Combinational Logic, FSM, SDS 9

The maximum allowable hold time for RegC is how long it takes for RegC’s input

to change, so (clk-to-q of A or B) + shortest CL time = 4 + (5 + 5) = 14 ns.

The minimum acceptable clock cycle time is clk-to-q + longest CL time + setup

time = 4 + (5 + 5 + 5) + 6 = 25 ns.

25 ns corresponds to a clock frequency of (1/(25 ∗ 10−9))s−1 = 40MHz


	Pre-Check
	Logic Gates
	Boolean Logic
	Combinational Logic Design
	FSM
	State Intro

