
CS 61C RISC-V Pipelining
Summer 2024 Discussion 8

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 By pipelining the CPU datapath, each single instruction will execute faster (latency

is reduced), resulting in a speed-up in performance.

False. Because we implement registers between each stage of the datapath, the time

it takes for an instruction to finish execution through the 5 stages will be longer

than the single-cycle datapath we were first introduced with. A single instruction

will take multiple clock cycles to get through all the stages, with the clock cycle

based on the stage with the longest timing.

1.2 A pipelined CPU datapath results in instructions being executed with higher through-

put (than the single-cycle CPU).

True. Recall that throughput is the number of instructions processed per unit time.

Pipelining results in a higher throughput because more instructions are run at once,

which utilizes more parts of the datapath simultaneously.

2 Pipelining Registers
Recall the five stages: In the IF stage, we use the Program Counter to access

our instruction as it is stored in IMEM. Then, we separate the distinct parts we

need from the instruction bits in the ID stage and generate our immediate, the

register values from the RegFile, and other control signals. Afterwards, using these

values and signals, we complete the necessary ALU operations in the EX stage.

Next, anything we do in regards with DMEM (not to be confused with RegFile or

IMEM) is done in the MEM stage, before we hit the WB stage, where we write

the computed value that we want back into the return register in the RegFile.

In order to pipeline, we separate the datapath into 5 discrete stages. These 5 stages,

divided by registers, allow operation of different stages of the datapath in the same

clock period. Different instructions can use different stages at a time. At each clock

cycle, the necessary inputs into a particular stage are sampled at the rising clock

edge (and available after the clk-to-q delay). After the stage operates on the inputs,

the corresponding outputs are fed into pipeline registers for the next stage. Note,

pipeline registers may also be required to pass information that may not be necessary

for the next immediate stage, but some future stage.



2 RISC-V Pipelining

2.1 Two diagrams are provided above. The topmost one is the standard single cycle

datapath. The second is a modified version. Compare these two diagrams and

explain the difference.

In the modified version, there is no wire that connects the output of the +4 block

close to the PC register to the WB mux. Instead, there is an additional +4 block,

which is located in the MEM stage. It takes as input the wire carrying the PC signal

(extended from the wire that feeds into the 1 input of the ASel mux). The output is

PC + 4, which feeds into the WB mux.

2.2 Using the modified single-cycle datapath as reference provided above, think about

the information that needs to be passed along from stage to stage. Which pipeline

registers are required at the end of each stage?



RISC-V Pipelining 3

IF to ID:

• PC : The most adjacent stage in which the PC signal is used later on is the

EX stage where PC is the input into the ASel mux.

• Inst : input into the RegFile, ImmGen, and control logic of the ID stage.

ID to EX:

• PC : input into the ASel mux

• RegReadData1 : is an input into the ASel mux.

• RegReadData2 : is an input into the BSel mux.

• Imm : is an input into the BSel mux.

• Inst : is required to compute the control logic for that particular instruction

being executed in a particular stage. Therefore, the values generated by the

control logic will be different in each stage depending on the input instruction.

What would happen if the Inst signal was not passed along? If each stage

involves a different instruction, is it correct for all stages to have the same

control logic?

EX to MEM:

• PC : input into the +4 block in the MEM stage.

• ALUOut : is an input into DMEM.

• RegReadData2 : is an input into DMEM,

• Inst : input into next stage’s control logic.

MEM to WB:

• PC + 4: input into WBSel mux.

• ALUOut : input into WBSel mux.

• MEM : input into WBSel mux.

• Inst : input into next stage’s control logic.

2.3 Looking at the way PC is passed through the datapath, there are two places where

+4 is added to the PC, once in the IF and MEM stage. Why do we add +4 to the

PC again in the memory stage?

We add +4 to the PC again in the memory stage so we don’t need to pass both

PC and PC+4 along the whole pipeline. This would use more registers, adding

unnecessary hardware. We also can’t just pass only PC+4 through the pipeline, as

we need the original PC value in operands like auipc.

3 Performance Analysis



4 RISC-V Pipelining

Register clk-to-q 30 ps

Register setup 20 ps

Register hold 10 ps

Mux 25 ps

Branch comp. 75 ps

ALU 200 ps

Imm. Gen. 15 ps

Memory read 250 ps

DMEM write setup

200 ps

RegFile read 100 ps

RegFile setup 20 ps

Given above are sample delays and setup times for each of the datapath components

and registers. In the questions below, use these in conjunction with the pipelined

datapath on the last page to answer them.

3.1 What would be the fastest possible clock time for a single cycle datapath? Recall

from last week’s discussion that one instruction which exercises the critical path is

lw.

(HINT: tclk-cycle ≥ tclk-to-q + tlongest-combinational-path + tsetup)

tclk ≥ tPC clk-to-q + tIMEM read + tRF read + tmux + tALU + tDMEM read + tmux + tRF setup

≥ 30 + 250 + 100 + 25 + 200 + 250 + 25 + 20

≥ 900 ps

Note that the delay in the immediate generator as well as the branch comparator

are omitted because the immediate generator and branch comparison is done in

parallel with the RegFile read and ALU computation respectively, the latter two

taking much longer time.

3.2 What is the fastest possible clock time for a pipelined datapath?

IF : tPC clk-to-q + tIMEM read + tReg setup = 30 + 250 + 20 = 300 ps

ID : tReg clk-to-q + tRF read + tReg setup = 30 + 100 + 20 = 150 ps

EX : tReg clk-to-q + tmux + tALU + tReg setup = 30 + 25 + 200 + 20 = 275 ps

MEM : tReg clk-to-q + tDMEM read + tReg setup = 30 + 250 + 20 = 300 ps

WB : tReg clk-to-q + tmux + tRF setup = 30 + 25 + 20 = 75 ps

tclk ≥ max(IF, ID,EX,MEM,WB) = 300 ps

Again, the immediate generator and branch comparator delays are overshadowed by

the longer delays of RegFile read and ALU.

3.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why

is the speedup less than 5×?

900 ps
300 ps , or a 3 times speedup. The speedup is less than 5 because of (1) the necessity

of adding pipeline registers, which have clk-to-q and setup times, and (2) the need

to set the clock to the maximum of the five stages, which take different amounts of



RISC-V Pipelining 5

time.

Note: Due to hazards, which require additional logic to resolve, the actual speedup

would likely be even less than 3 times.


	Pre-Check
	Pipelining Registers
	Performance Analysis

