
CS 61C RISC-V Pipelining
Summer 2024 Discussion 8

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 By pipelining the CPU datapath, each single instruction will execute faster (latency

is reduced), resulting in a speed-up in performance.

1.2 A pipelined CPU datapath results in instructions being executed with higher through-

put (than the single-cycle CPU).

2 Pipelining Registers
Recall the five stages: In the IF stage, we use the Program Counter to access

our instruction as it is stored in IMEM. Then, we separate the distinct parts we

need from the instruction bits in the ID stage and generate our immediate, the

register values from the RegFile, and other control signals. Afterwards, using these

values and signals, we complete the necessary ALU operations in the EX stage.

Next, anything we do in regards with DMEM (not to be confused with RegFile or

IMEM) is done in the MEM stage, before we hit the WB stage, where we write

the computed value that we want back into the return register in the RegFile.

In order to pipeline, we separate the datapath into 5 discrete stages. These 5 stages,

divided by registers, allow operation of different stages of the datapath in the same

clock period. Different instructions can use different stages at a time. At each clock

cycle, the necessary inputs into a particular stage are sampled at the rising clock

edge (and available after the clk-to-q delay). After the stage operates on the inputs,

the corresponding outputs are fed into pipeline registers for the next stage. Note,

pipeline registers may also be required to pass information that may not be necessary

for the next immediate stage, but some future stage.



2 RISC-V Pipelining

2.1 Two diagrams are provided above. The topmost one is the standard single cycle

datapath. The second is a modified version. Compare these two diagrams and

explain the difference.

2.2 Using the modified single-cycle datapath as reference provided above, think about

the information that needs to be passed along from stage to stage. Which pipeline

registers are required at the end of each stage?

IF to ID:



RISC-V Pipelining 3

ID to EX:

EX to MEM:

MEM to WB:

2.3 Looking at the way PC is passed through the datapath, there are two places where

+4 is added to the PC, once in the IF and MEM stage. Why do we add +4 to the

PC again in the memory stage?

3 Performance Analysis
Register clk-to-q 30 ps

Register setup 20 ps

Register hold 10 ps

Mux 25 ps

Branch comp. 75 ps

ALU 200 ps

Imm. Gen. 15 ps

Memory read 250 ps

DMEM write setup

200 ps

RegFile read 100 ps

RegFile setup 20 ps

Given above are sample delays and setup times for each of the datapath components

and registers. In the questions below, use these in conjunction with the pipelined

datapath on the last page to answer them.

3.1 What would be the fastest possible clock time for a single cycle datapath? Recall

from last week’s discussion that one instruction which exercises the critical path is

lw.

(HINT: tclk-cycle ≥ tclk-to-q + tlongest-combinational-path + tsetup)



4 RISC-V Pipelining

3.2 What is the fastest possible clock time for a pipelined datapath?

3.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why

is the speedup less than 5×?


	Pre-Check
	Pipelining Registers
	Performance Analysis

